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Abstract

We address the thermal problem posed at the Sandia Validation Challenge Workshop. Unlike traditional approaches that confound
calibration with validation and prediction, our approach strictly distinguishes these activities, and produces a quantitative measure of
model-form uncertainty in the face of available data. We introduce a general validation metric that can be used to characterize the dis-
agreement between the quantitative predictions from a model and relevant empirical data when either or both predictions and data are
expressed as probability distributions. By considering entire distributions, this approach generalizes traditional approaches to validation
that focus only on the mean behaviors of predictions and observations. The proposed metric has several desirable properties that should
make it practically useful in engineering, including objectiveness and robustness, retaining the units of the data themselves, and gener-
alizing the deterministic difference. The metric can be used to assess the overall performance of a model against all the experimental
observations in the validation domain and it can be extrapolated to express predictive capability of the model under conditions for which
direct experimental observations are not available. We apply the metric and the scheme for characterizing predictive capability to the
thermal problem.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Although there is increasing consistency in the formal
definition of the term ‘validation’ [1,2], there is still wide
disagreement about the precise steps involved in the valida-
tion process. In this paper, we use the terminology and the
following three steps identified by [3]:

(i) Validation assessment: assessment of model accuracy
by comparison of predictions against experimental
data,

(ii) Model extrapolation: extrapolation (or possibly inter-
polation) of the model to the intended use, and
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(iii) Adequacy decision: determination of whether the
model is adequate for the intended use.

Validation is often contrasted with calibration or updat-
ing, which is the fitting of a model to empirical observa-
tions to maximize the match between predictions and
observations, usually by changing model parameters but
sometimes by introducing or omitting model components.
Because we want to distinguish assiduously between these
two activities, we will assume that a model is fixed while
a validation is undertaken. As soon as the model is changed
in structure or parameter values in any way to account for
data, the activity is no longer validation in our strict sense.

The problem of validation might initially seem to be a
relatively straightforward one: all one needs to do is take
the prediction the modeler gives us and compare it to the
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new observation the empiricist gives us and see whether
they match. Clearly, the answer could be that they match
perfectly, that the model is a little off, or that the model
is way off. But this simplicity is immediately corrupted by
the complexity of the real world. In fact, analysts must
have strategies to address several questions:

1. What if the prediction is a probability distribution
rather than a point value?

2. What if there is experiment-to-experiment variability in
the measured data?

3. What if there are statistical trends in the experimental
data?

4. What if there are multiple predictions about different
outputs to be assessed?

5. What if the predictions from the model are extremely
expensive to compute?

6. What if the data were collected under conditions other
than the intended application?

7. What if there is non-negligible experimental measure-
ment uncertainty in the data?

This paper addresses the first six of these issues through
the example of the Thermal Challenge Problem [4,5], which
is the first of three problems considered at the Sandia Val-
idation Challenge Workshop [6] in Albuquerque, New
Mexico, over 21–23 May 2006. We interpreted the chal-
lenge problem to involve two goals. The first goal is to
measure in some objective way the conformance of predic-
tions from the model with the experimental measurements.
The second goal is to use this measure to characterize the
reliability, i.e., estimate the uncertainty, of other predic-
tions made by the model.

Validation is not about checking whether a model is
right or wrong per se. Indeed, we believe, as George Box
famously asserted [7], that all models of any physical reality
are wrong, at least in the narrow sense that they can never
be perfect. Validation is about assessing the accuracy of the
model and assessing whether a model is good enough for
some intended purpose. For a deterministic model, valida-
tion can be a fairly straightforward affair. The model
makes a point estimate for its prediction about some quan-
tity. This prediction would be compared against one or
more measurements about that quantity and the differ-
ence(s) would be understood as a measure of how accurate
the model was. A model could be consistently inaccurate
and yet close enough for its purpose. Likewise, even a
highly accurate model might not be good enough if it is
needed for some delicate, high-consequence decisions.

Two pervasive issues complicate these comparisons in
general validation problems. The first is that, today, most
serious simulation models generate entire distributions

rather than point estimates as their predictions of system
response quantities. These distributions often characterize
the stochastic variability of these quantities and perhaps
the epistemic uncertainty about these quantities. In many
cases, experimental observations are small collections of
numbers, although they can be abundant enough to be
conveniently characterized as distributions.

The second issue is the data available for validation may
not be directly relevant to the prediction of interest. In par-
ticular, we might be able to collect data under conditions
that are similar, but not identical, to those for which a pre-
diction is desired. This necessitates some sort of extrapola-
tion that will allow us to characterize the validity of a
model for prediction even when no immediately relevant
data are available to compare against this prediction. In
a strong sense, any forecast about future or general predic-
tive capability is necessarily an extrapolation of some kind,
even if directly relevant data are available, because such a
forecast is always about hypothetical data that might be
observed, rather than merely a summary of the consistency
with past observations.

Section 2 gives a synopsis of the thermal challenge prob-
lem. Section 3 considers a risk-analytic approach to the
problem that translates the variability observed in the
material characterization data into exceedance probabili-
ties of the system response quantity temperature. The anal-
ysis is refined and extended in Section 4 to account for a
subtle trend in the material characterization data that
causes values of one of the material properties to depend
partially on the material’s temperature. Section 5 suggests
a general validation metric and procedures for its use that
can be applied when a model’s predictions take the form of
probability distributions. Section 6 applies this metric to
the challenge problem to assess the overall performances
of the models developed in Sections 3 and 4 relative to
all of the experimental observations over the validation
domain. Section 6 also considers the extrapolation from
the measured performances of the model in the face of
the individual data points to express the predictive capabil-
ity of the model under conditions of regulatory interest.
Section 7 answers several specific questions posed as part
of the validation challenge and Section 8 offers conclusions
and outlines further research needs.
2. Sandia validation challenge problem

The formulation and numerical details of the thermal
challenge problem are given in [4] and will not be reiterated
here except in briefest outline. The problem consists of a
mathematical model, three sets of experimental data which
differ in size (‘low’, ‘medium’ and ‘high’), and a regulatory
requirement. The mathematical model is of the tempera-
ture under heating of a device constructed of some material
and has the form

T ðx; tÞ ¼

T iþ qL
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where T is temperature, x is location within the material, t

is time since the onset of heating, Ti is the initial ambient
temperature, q is the heat flux, L is the thickness of the
material, and k and qCp are properties of the material.
The regulatory requirement is

Probð900 �C < T x¼0 cm;t¼1000 s;T i¼25 �C;q¼3500 W=m2;L¼1:90 cmÞ
< 0:01;

ð2Þ

given material properties of the device associated with a
particular manufacturing process. The challenge is to use
available empirical data to estimate whether the regulatory
requirement in Expression (2) is satisfied. The empirical
data includes material characterization data consisting of
several measurements of the material properties k and
qCp, and ‘‘ensemble” and ‘‘accreditation” data consisting
of experimental observations of temperature for various
values of x, t, q and L defining a validation domain, none
of which were collected at the conditions of regulatory
interest.

In this paper we use probability distributions to charac-
terize both the observed variability in data and the
forecasted variability of predictions. The predicted temper-
ature would be a distribution because, although the values
of x, t, Ti, q, and L are prescribed for us in the statement of
the problem, the values of the material properties k and
qCp are only known by sample data, which ought to be
characterized by probability distributions. The regulatory
requirement prescribes a critical temperature of 900 �C
and a critical probability of 1%. If the predicted distribu-
tion for temperature ventures anywhere into the region of
the temperature-probability plane where values larger than
900 �C are more probable than 0.01, then we know that we
are out of compliance with the regulatory condition.

In principle, it would have been possible for those who
designed the challenge problem to simply present us with
the predictions from the model (expressed as distributions)
and the observed data (expressed as collections of num-
bers), rather than giving us the model and asking us to gen-
erate the predictions. In a sense, the activity of producing
predictions is not part of validation per se, but rather part
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Fig. 1. The empirical distributions (step functions) for qCp and k seen duri
(smooth curves) fitted by the method of matching moments.
of modeling. However, meeting the challenge in this paper
requires delving into the modeling process to some extent.
We recognize, moreover, that modeling and validation are
usually intricately intertwined in practice, just as validation
and calibration are often intertwined. Although we intend
to distinguish between the generation of predictions and
the validation of those predictions against data—and the
focus of this paper is on the latter—for the purposes of
the challenge, we don the modeler’s hat where necessary
and implement (and even slightly modify) the model to cre-
ate predictions from it to be compared to observations.

The validation challenge problem was purposefully
designed with some model weaknesses and inconsistencies
in order that it realistically reflect the common situations
analysts encounter. Thus, there are assumptions that seem
arguable or incorrect, including assertions that certain
parameters are constants, that interacting variables are
mutually independent, and that there is no uncertainty in
measured data. We believe that a comprehensive validation
study demands that such assertions be critically examined,
dealt with in a realistic manner, and perhaps rejected in
favor of more realistic assumptions.

3. Risk-analytic approach to stochastic variation

The materials characterization data described in the
challenge problem suggest there is variability in both the
thermal conductivity k and heat capacity qCp. The step
functions in Fig. 1 show the cumulative empirical distribu-
tion functions for the values for qCp and k from the ‘med-
ium’ materials characterization data. These observed
patterns likely understate the true variabilities in these
parameters because they represent only 20 observations
for each of them. If we had observed different sets of val-
ues, it is likely we would have seen slightly different pat-
terns, and we may well have seen some values above or
below the observed ranges from the 20 values. To model
this possibility of more extreme values than were seen
among the limited samples, risk analysts commonly fit a
distribution to data to model the variability of the underly-
ing population. We used normal distributions for this pur-
pose, configured so that they had the same mean and
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standard deviation as the data themselves, according to the
method of matching moments [8]. The fitted normal distri-
butions are shown in Fig. 1 as the smooth cumulative dis-
tributions. We do not consider this fitting of distributions
to be model calibration because the distributions are not
selected with reference to the system response quantity of
temperature. Instead, the distributions merely summarize
the material characterization data which are not otherwise
used in the validation process.

We also fitted normal distributions to the ‘low’ and
‘high’ data sets as well. The computed moments for the
three data sets for each parameter are given in the follow-
ing table:
Thermal conductivity, k (W/m°C)
Fig. 2. Scattergram of qCp and k seen during the ‘medium’ materials

Low
(n = 6)
Medium
(n = 20)
High
(n = 30)
characterization.

Thermal conductivity k, W/m �C
Arithmetic mean
 0.06002
 0.06187
 0.06284

Standard deviation
 0.01077
 0.00923
 0.00991
Volumetric heat capacity qCp, J/m3 �C
Arithmetic mean
 405,500
 402,250
 393,900

Standard deviation
 42,065
 39,511
 36,251
To express the uncertainty about the temperature pre-
diction that arises from the stochastic variability of k and
qCp observed in the characterization of the material prop-
erties, we need to project these normal distributions
through the temperature response model in Expression
(1). The projection can be effected with a straightforward
Monte Carlo simulation [8,9]. Thermal conductivity and
volumetric heat capacity are the only distributional vari-
ables in the simulation; the rest are constants:
Variable
 Symbol
 Value (s)
 Units
Thermal
conductivity
k
 Normal
(0.06187, 0.00923)
W/m �C
Volumetric heat
capacity
qCp
 Normal
(402250,39511)
J/m3 �C
Heat flux
 q
 3500
 W/m2
1.0
Thickness
 L
 0.019
 m
ty
Initial temperature
 Ti
 25
 �C

0.8

bi
li
Location
 x
 0
 m
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Fig. 3. Distribution (curve) resulting from risk analysis of stochasticity in
material properties against the regulatory requirement (straight lines) for
the exceedance probability when x = 0 cm, t = 1000 s, Ti = 25 �C,
q = 3500 W/m2, and L = 1.90 cm.
There could also be variability in some of the other
inputs too, especially in variables such as thickness L and
heat flux q. We neglect these variabilities here only because
the challenge problem instructs us to.

Whenever there is stochasticity in more than a single
variable, there is a possibility that correlation or depen-
dence between the variables may influence any arithmetic
functions of those variables [10,11]. We looked for evidence
of such dependence in the paired thermal conductivity and
heat capacity data collected during materials characteriza-
tion. Fig. 2 shows the scattergram of these two variables
for the ‘medium’ data set, which reveals no apparent trends
or evidence of statistical dependence. The Pearson correla-
tion coefficient between these twenty points is 0.0595,
which is not remotely statistically significant (p� 0.5, df =
18). Because there are no physical reasons to expect corre-
lations or other dependencies between these variable, at
least over the variability ranges considered here, it would
seem reasonable to assume that these quantities are statis-
tically independent of one another. Plotting and correlation
analysis for the ‘high’ and ‘low’ data sets gave qualitatively
similar results.

We used 10,000 replications in the Monte Carlo simula-
tion, although many fewer replications could have sufficed
if the model had been computationally intensive. We imple-
mented the simulation in the R programming language
[12]. When the stochasticity of k and qCp is projected
through the heating model, it produces a distribution for
the surface temperature after 1000 s. The output distribu-
tion produced is displayed as the complementary cumula-
tive distribution in Fig. 3 so that the ordinate gives the
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probability that the random variable temperature exceeds
the value given on the abscissa. We use the complementary
display for temperature because it makes it easier to visual-
ize the probabilities of large values, which are the focus of
concern in the regulatory statement. This result suggests
that the probability of the temperature being larger than
900 �C is 0.22, much larger than the target of 0.01. This
result argues strongly that the system is out of compliance
with the regulatory requirement in Expression (2). This is
obvious in the depiction in Fig. 3 because the distribution
makes a deep incursion into the upper, right quadrant of
the temperature-probability plane. The mean of the pre-
dicted temperature distribution is about 850 �C, which is
similar to the value 838 �C from a deterministic calculation
based on mean values for k and qCp. Although the mean is
well below the temperature threshold of 900 �C, the sto-
chasticity observed in the material properties implies that
the regulatory threshold is regularly exceeded much more
often than 1% of the time.

3.1. Robustness of the prediction

The robustness of this distributional result can be esti-
mated by exploring its sensitivity to the choice of the distri-
butional parameters for the k and qCp inputs, the normal
shapes used to model their variation, and the assumptions
about intervariable dependence. (An analyst might also
want to explore the effects of variability or measurement
error in the other inputs of the heating model, and the effect
of uncertainty about the structure of the heating equation
itself, but the challenge problem instructs us to ignore these
uncertainties.) Because there were few observations col-
lected in the material characterization study (6, 20 and 30
per variable in the ‘low’, ‘medium’ and ‘high’ data sets
respectively), the estimates of the means and variances used
to parameterize the normal distributions are associated
with an appreciable degree of sampling uncertainty. Of
course the effect of such sampling uncertainty on the esti-
mate of the final temperature distribution is for the most
part symmetric. That is, it creates bands of uncertainty
on either side of the central distributional estimate dis-
played in Fig. 3. Therefore, if we were to enlarge our assess-
ment by accounting for the sampling uncertainties about
the k and qCp inputs, the result would be that the excee-
dance probability estimate of 0.22 would expand to an
interval around that value. From a decision maker’s point
of view, this could only make the outcome seem worse for
the hypothesis that the system is in compliance with the
regulatory requirement in Expression (2), which specifies
the probability not be larger than 0.01, because the uncer-
tainty assessment reveals it might be even larger than 0.22.

An assessment accounting for uncertainty about the
input distribution shapes has similar import. The model
for k and qCp that would produce the smallest dispersion
in the final temperature distribution, while still being con-
sistent with the observed variability for k and qCp, would
use the empirical distribution functions for these two
inputs rather than parametric distributions such as nor-
mals. The empirical distribution functions simply summa-
rize the observed data actually seen in the material
characterization data. They are nonparametric estimates
of the distributions because they do not require the analyst
to select any parameters to specify the distribution. The
model based on these distributions would be at least argu-
ably reasonable, although it is likely to understate the
chances of extreme values of the inputs. The result of the
simulation based on this resampling strategy is very similar
to the result shown in Fig. 3; in fact the final temperature
distributions are largely indistinguishable from one another
given the line thickness used in the display. The probability
of exceeding 900 �C increases slightly to about 0.25, but the
distribution tails contract so that, for instance, 1050 �C is
the largest possible temperature (corresponding to the
smallest observed values for k and qCp).

The only way that we might be in compliance with the
regulatory requirement is if our risk analysis has overesti-
mated the variation in the resultant temperature distribu-
tion. One assumption possibly worth reconsideration is
whether k and qCp really have stationary distributions that
are independent of temperature changes in the material. If
there is some dependence of these material properties on
temperature, it might be the case that our model predic-
tions are in error. We consider this possibility in the next
section.
4. Temperature dependence

In the description of the mathematical model for heat
conduction in Expression (1), the volumetric heat capacity
qCp and thermal conductivity k are assumed to be indepen-
dent of temperature T. It is reasonable to ask whether this
assumption is tenable given the available materials charac-
terization data. Fig. 4 is the scattergram for the ‘medium’
data set for heat capacity as a function of temperature. Lin-
ear and quadratic regression analysis reveal no statistically
significant trend among these points. The pictures are qual-
itatively the same for the ‘low’ and ‘high’ data sets in that
no trend or other stochastic dependence is evident. Thus,
the experimental data for heat capacity support the
assumption in the mathematical model.

The materials characterization data for thermal conduc-
tivity, on the other hand, seem to be strongly related to
temperature. Fig. 5 shows the scattergram of thermal con-
ductivity as a function of temperature for the ‘medium’
data together with a regression line fitted by the least
squares criterion. This regression is statistically significant
(p < 0.001,df = 18). The resulting model for this trend
and residual scatter is

k � aþ bT þ normalð0; rÞ
¼ 0:0505þ 2:25� 10�5T þ normalð0; 0:0047Þ;

where a = 0.0505 and b = 2.25 � 10�5 are the fitted regres-
sion coefficients for the intercept and slope, the normal
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function denotes a normal distribution with the given mean
and standard deviation, and r = 0.0047 is the residual stan-
dard error from the regression analysis. This r is the stan-
dard deviation of the Gaussian distributions that, under
the linear regression model, represent the vertical scatter
of k at a given value of the temperature variable. There is
no evidence that this trend is other than linear; quadratic
regression does not provide a significant improvement in
the regression fit. The visual impression that the data might
be heteroscedastic—specifically that the variance among
conductivities at the highest temperature is larger than
for other temperatures—was not statistically significant in
a post hoc test. The homoscedasticity and the strong linear
trend of thermal conductivity on temperature are also evi-
dent in the ‘low’ and ‘high’ data sets, although the numer-
ical details are of course slightly different.

This statistical dependence has implications for the anal-
ysis of the heating model. As given in the challenge prob-
lem, the mathematical model counterfactually assumes
independence of thermal conductivity and temperature. If
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Fig. 5. Strong dependence in the scattergram of thermal conductivities
and temperatures, together with the linear regression line, in the ‘medium’
materials characterization data.
we could account for the observed dependency of k on T,
we might be able to reduce the overall uncertainty in the
model’s predictions. The middle cumulative distribution
function in Fig. 6 is the normal distribution fitted to the
thermal conductivities k in the materials characterization
data. (It is the same distribution previously shown in the
right graph of Fig. 1.) We might be able to make the risk
analysis described in the previous section more sophisti-
cated by replacing this broad distribution with a family

of much tighter normal distributions representing the var-
iability of k conditional on temperature. Each of these tigh-
ter distributions is simply k � 0.0505 + 2.25 � 10�5T +
normal(0,0.0047) for a given scalar value of T. The breadth
of each such distribution of k is the standard deviation of
the residual term r = 0.0047. Two distributions from this
family are shown in the graph. When the temperature is
20 �C, the distribution of k’s has a mean of 0.05 watts
per meter degree. When the temperature is 900, the distri-
bution has a mean of 0.07. For intermediate temperatures,
the distribution of k has an intermediate central tendency,
but always the same dispersion. Thus there is an entire con-
tinuous family of parallel normal distributions defined by
the regression analysis of thermal conductivity on temper-
ature. As the surface is heated, the distribution of thermal
conductivities shifts higher. This means that, given a tem-
perature of the material, the stochastic variability in ther-
mal conductivity is constrained to a tighter distribution
than would be suggested by the shallow middle distribution
which ignores the temperature dependence. The condition-
ing of thermal conductivity on temperature reduces the
variability compared to the traditional risk analysis of the
previous section, although there remains an appreciable
amount of variability in k.

We can combine this regression model relating k and T

with the challenge problem’s heating function Expression
(1), albeit in an ad hoc fashion because one of the assump-
tions underlying Expression (1) is that k is independent of
T. This combination creates a system of two equations that
can be solved iteratively. In this iterative approach, we start
from the (unconditional) distribution of k observed in the
materials characterization data, and compute from it the
resulting distribution of T (just as we did in Section 3).
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We then project this distribution of T through the regres-
sion function to compute another distribution of k. That
is, we compute the new distribution k � 0.0505 + 2.25 �
10�5T + normal(0,0.0047), where T is the just computed
distribution of temperatures and the normal function gen-
erates normally distributed random deviates centered at
zero with standard deviation 0.0047 (which are indepen-
dent of the temperatures). The resulting distribution of
k’s conditional on temperature is then used to reseed the
process, which is repeated until the distribution of T con-
verges. We found that only two or three iterations were suf-
ficient for convergence.

When we undertake this iterative solution, we are clearly
trespassing into the domain of the physics modeler. We
said we did not want to do this because it confounds the
activities of validation with modeling, but the challenge
seems designed to invite us to do it, so we are taking the
bait because the model seems clearly deficient as originally
stated. We offer the result, not as our belief that it is the
best approach, but merely as an alternative model which
we will subject to a validation process. Note that we are
certainly not asserting, nor do we necessarily believe, that
this regression model is the best or even an appropriate
way to account for the dependence of k and T. Accounting
for the dependence is delicate; one might prefer to send the
issue back to the modeler who could devise a new model
with a solution to an altered differential equation. A phys-
ics modeler who knows about their interactions should
really be making pronouncements about such things. We
are just exploring this as an exercise to see whether it can
reduce the variability of the resulting surface temperatures
and improve the fit to data (which we will consider in Sec-
tion 6).

We revisited the Monte Carlo simulation described in
the previous section with the ad hoc model for the depen-
dence of k and T. The resulting predicted distribution of
surface temperatures after 1000 s is shown as the solid dis-
tribution in Fig. 7. This distribution of temperatures has a
smaller range and reduced variance compared to that seen
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Fig. 7. Result of risk analysis with correction for dependence between k

and T using regression (solid line), together with previous result assuming
k and T are independent (dotted).
in the traditional risk analysis of the previous section, but it
is still in violation of the regulatory requirement in Expres-
sion (2) because it also encroaches into the danger zone of
the upper, right quadrant. However, it does so much less
than the result from the risk analysis conducted in Section
3 with the unmodified model. The estimated probability
that temperature exceeds the critical value of 900 �C is
about 0.05, only five times larger than that specified in
the regulatory requirement.
5. Validation assessment

The topic of model validation has received considerable
attention recently [13–16]. Three main approaches are com-
monly used for validation in engineering settings, including
hypothesis testing [17–21,cf. 10], Bayesian methods [22–
28,cf. 29,cf. 30], and mean-based comparisons [31,32,3].
All three approaches have drawbacks. For instance, the
purpose of hypothesis testing is to identify statements for
which there is compelling evidence of truth. This is a rather
different goal than that of validation, which is focused on
assessing the quantitative accuracy of a model. The Bayes-
ian approach to validation is primarily interested in evalu-
ating the probability (i.e., the belief) that the model is
correct. Yet, to our minds, this is not the proper focus of
validation. We are not concerned about anyone’s belief
that the model is right; we are interested in objectively mea-

suring the conformance of predictions against data that have
not previously been used to develop or calibrate the model.
The main limitation of approaches based on comparing
means or other summary statistics is that it considers only
the central tendencies or other specific behaviors of data
and predictions and not their entire distributions. When
predictions are distributions, they can contain a consider-
able amount of detail and it is not always easy to know
what is important, nor to be sure that a comparison of
means will be sufficiently informative for a particular
application.

In this section, we introduce the notion of comparing
probabilistic quantities, describe the desirable properties
that a validation metric for making such comparisons
should have, and suggest a particular one that has these
properties. Section 6 applies this metric to the thermal chal-
lenge problem.
5.1. Comparing values that vary randomly

There are a variety of standard ways to compare ran-
dom variables in probability theory (http://www.wikipe-
dia.org/Random_variables#Equivalence_of_random_vari-
ables). If random numbers X and Y always have the same
value, the random variables are said to be ‘‘equal”, or
sometimes ‘‘surely equal”. A much weaker notion of equal-
ity is often useful. If we can only say that the expectation
(i.e., the average) of the absolute values of the differences
between X and Y is zero, the random variables are said

http://www.wikipedia.org/Random_variables#Equivalence_of_random_variables
http://www.wikipedia.org/Random_variables#Equivalence_of_random_variables
http://www.wikipedia.org/Random_variables#Equivalence_of_random_variables
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to be ‘‘equal in mean”. If they are not quite equal in mean,
we can measure their discrepancy in this sense by the mean
metric

dEðX ; Y Þ ¼ EðjX � Y jÞ 6¼ jEðX Þ � EðY Þj;

where E denotes the expectation operator. (Note that this
difference is not the same as the absolute value of the differ-
ence between the means.) The idea can be generalized to
higher-order moments, and equality in a higher-order mo-
ment implies equality in all lower-order moments.

The notion of equality for randomly varying quantities
can be relaxed further still by comparing only the shapes
of the probability distributions of the random variables.
Random variables whose distributions are identical are
said to be ‘‘equal in distribution”. This is often denoted
as X � Y, or sometimes by X = dY. This is really a rather
loose kind of equality, because it does not require the indi-
vidual values of X and Y to ever be equal, or even to ever
be close. For instance, suppose X is normally distributed
with mean zero and unit variance. Then X and Y = �X
are obviously equal in distribution, but are about as far
from equality as can be imagined. Nevertheless, equality
in distribution is an important concept because a distribu-
tion often represents all that is known about the values of a
random variable. If the distributions are not quite identical
in shape, the discrepancy can be measured with any of
many possible measures that have been proposed for vari-
ous purposes. For instance, a very common such measure
is the maximal vertical difference between the two cumula-
tive distribution functions

dSðX ; Y Þ ¼ sup
z
jPrðX 6 zÞ � PrðY 6 zÞj;

which is the Smirnov distance used, for example, in defin-
ing the Kolmogorov–Smirnov statistical test for comparing
distributions [33–35].

One of the properties of the Smirnov distance is that it is
symmetric, which is to say that dS(X,Y) always equals
dS(Y,X). The symmetry might be considered unnecessary
or even counterintuitive as a feature for validation. We
do not view predictions and observations as exchangeable
with each other; it matters which is which. Suppose, for
instance, that we inadvertently switched the theoretical dis-
tribution with the data distribution. One might expect to
obtain a different result from having made such a mistake,
but the Smirnov distance does not change whether the data
and prediction are exchanged or not.

The Kullback–Leibler divergence [36,37] is another very
widely used measure of the discrepancy between distribu-
tions that is not symmetric. It is defined, in its discrete for-
mulation, between a probability mass function p for X and
a probability mass function q for Y as

X
z

pðzÞlog2

pðzÞ
qðzÞ ;

where z takes on all values in the common range of X and
Y. The p distribution summarizes the observations and the
q distribution represents the theoretical prediction. The
continuous formulation is similar except that the summa-
tion is replaced by an integration. The word ‘divergence’
may be misleading because this quantity has nothing to
do with notions of divergence familiar from calculus as
the inner product of partial derivatives or the flux per unit
volume. Instead, the term is used here in its other meaning
as deviation from a standard. The Kullback–Leibler diver-
gence is commonly used in information theory where it is
interpreted as the expected extra message length per datum
that must be transmitted to identify a particular value of z

drawn from among all those in the common range of X and
Y that would be needed to communicate a value when an
encoding is optimal for a given incorrect distribution q,
rather than using an encoding based on the true distribu-
tion p. It is also well known in physics as the relative entro-
py between p and q, i.e., the entropy of the distribution p

with respect to the distribution q.
As we have mentioned, there are, in fact, many other

measures that could be used to compare data and predic-
tion distributions. But, given the broad acceptance and
ubiquity of the Smirnov and Kullback–Leibler measures
in probability and physics, it is perhaps necessary to
explain why we simply do not use one of these as our val-
idation metric. The next section considers the features of
such a metric that would make it most useful for the appli-
cation to the challenge problem and other similar problems
in validation. In the following section we suggest still
another measure to assess the discrepancy between the pre-
diction and observations that we think is best suited for
validation of probabilistic models in engineering.
5.2. Desirable properties of a validation metric

A validation metric is a formal measure of the mismatch
between predictions and data that have not previously been
used to develop the model. A low value of the metric means
there is a good match, and a higher value means that pre-
diction and data disagree more. We are interested in valida-
tion metrics that can be applied when predictions are
probabilistic and are still reasonably intuitive to engineers
and project managers. There are many desirable properties
of a validation metric that would be useful in assessing the
accuracy of models used in engineering simulations. Per-
haps naturally, the first such property is that the validation
metric be an objective measure of the distance, in some
sense, between prediction and new data. Objectiveness
means that, given a collection of observations and predic-
tions, a validation metric will produce the same assessment
no matter what analyst conducts it. This is a basic tenet of
scientific and engineering practice, that the conclusion be
reproducible and that it not depend on the attitudes or pre-
dilections of the analysts. If some inescapable subjectivity
must enter the assessment, it would be good to keep this
intrusion as small and as limited as possible so as to
emphasize the objectiveness of the method and minimize
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the elements subject to dispute. Objectiveness helps to min-
imize chance that the distortions from particular agendas
enter into the analysis.

It is also important that the validation metric in some
reasonable way generalizes deterministic comparisons

between scalar values that have no uncertainty. That is, if
the prediction and the corresponding measurement are
both point values, then the natural metric is simply their
difference. We would like the metric for the case when there
is uncertainty to generalize this idea, and to reduce back to
the simple distance when the prediction and observations
are very tight distributions. There are, of course, many
ways to make a generalization of this difference, but main-
taining the backward compatibility, as it were, with the
intuitive methods of validation for point values seems to
us to be essential.

The validation metric should reflect differences in the full

distribution of the predictions and the data. This is to say
that a distributional comparison should be sensitive not
just to differences in the means, or to differences in the
means and variances, but to differences in the entire statis-
tical distributions. Having said this, we probably would not
like the result to be totally swamped by peculiarities in the
extreme tails of the distributions, especially if those tails
represent highly unlikely behaviors or very rare occur-
rences. Some degree of robustness that makes the valida-
tion measure not too sensitive to long tails will tend to
make it more practical in real-world applications of
validation.

We argue that the validation metric should express its
result in physical units rather than some esoteric statistical
units. For instance, if the prediction and the measurement
are in degrees Celsius, then the metric that measures their
discrepancy should also be a value in degrees Celsius rather
than some anonymous normalized scale that has little intu-
ition for engineers and project managers. The desirability
of this feature is related to the aforementioned need that
it generalize deterministic comparisons.

For closely related reasons, the measure should be
unbounded in the sense that, if the prediction is completely
off the mark of the measurement, the metric characterizing
this discrepancy should be able to grow to be an arbitrarily
large value. The alternative is a bounded of scaled measure
which produces some upper value once the prediction and
the data become sufficiently dissimilar but then can no
longer distinguish even larger dissimilarities.

Finally, the measure used in validation should be also be
mathematically well behaved and well understood. It
would probably be useful if the measure were a true metric

in the mathematical sense, or a similar function, which has
the essential features of a true distance function. By defini-
tion, a mathematical metric d has four properties [38]:
Non-negativity
 d(x,y) P 0,

Symmetry
 d(x,y) = d(y,x),

Triangle inequality
 d(x,y) + d(y,z) P d(x,z), and

Identity of indiscernibles,
 d(x,y) = 0 if and only if x = y.
If not a complete metric, the measure would surely have

most of these properties. We have already mentioned the
possibility that the measure not be symmetric. A non-sym-
metric measure that satisfies the other metric properties is
called a ‘quasimetric’. A non-negative, symmetric measure
that has the identity of indiscernibles property is called a
‘semimetric’. A non-negative, symmetric measure that sat-
isfies the triangle inequality is called a ‘pseudometric’.

5.3. Proposed metric for validation of probabilistic

predictions

This section defines a metric between a probabilistic pre-
diction and a set of one or more empirical observations.
Any probabilistic prediction of the form we are considering
in this paper can always be characterized as a cumulative
distribution function F(x) or, equivalently, as a comple-
mentary cumulative distribution function 1 � F(x). In this
notation, x denotes whatever variable the prediction is
about. The prediction is specified by the model, and we pre-
sume that it has been given in this format. The observa-
tion(s), on the other hand, are usually provided as a
collection of point values in a data set. The distribution
function for a data set, which is sometimes called its empir-
ical distribution function or EDF, summarizes the data set
as a function suitable for graphical depiction. It is a func-
tion from the x-axis to a probability scale on the interval
[0,1]. It is constructed as a non-decreasing step function
with a constant vertical step size of 1/n, where n is the
sample size of the data set. The locations of the steps
correspond to the values of the data points. Such a distri-
bution for data xi, i = 1, . . . ,n, is

SnðxÞ ¼
Pn

i¼1Iðxi; xÞ
n

;

where

Iðxi; xÞ ¼
1 xi 6 x;

0 xi > x;

�

so that Sn(x) is simply the fraction of data values in the
data set that are at or below each magnitude x. A distribu-
tion preserves the statistical information in the data set
about its central tendency or location, its dispersion or
scatter, and, in fact, all other statistical features of the dis-
tribution. The only information in the original data set that
is not in the distribution is the order in which the values
were originally given, which is meaningless whenever the
data were sampled at random. When the data set consists
of a single value, then the Sn function is a simple spike at
the location along the x-axis given by that value, that is,
it is zero for all x less than that value and one for all x lar-
ger than that value. For graphical clarity, however, it be-
comes convenient not to depict these flat portions at zero
and one when the functions are plotted.

We propose to use the area between the prediction dis-
tribution F and the data distribution Sn as the measure of
the mismatch between them. Mathematically, the area
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between the curves is the integral of the absolute value of
the difference between the functions

dðF ; SnÞ ¼
Z 1

�1
jF ðxÞ � SnðxÞjdx:

It is clear geometrically that this quantity is also equal to
the average horizontal difference between the two func-
tions,

R
jF �1ðpÞ � SnðpÞ�1jdp, but this is not the same as

the average of the absolute differences between random val-

ues from these two distributions. (Such an average would
not be zero if the distributions were coincident.) This area
is thus a function of the shapes of the distributions, but is
not readily interpretable as a function of the underlying
random variables. The area measures the disagreement or
‘badness of the fit’ between theory and empirical evidence.
It is a metric so long as the integral exists. The rest of this
section explains the features of this metric and justifies its
usefulness as a measure for validation assessment.

Fig. 8 illustrates this area measure of mismatch for two
data sets against a prediction distribution of temperature.
The prediction distribution, shown as the smooth gray
curve, is the same in both graphs. This prediction distribu-
tion might be obtained by solving the mathematical model
analytically or perhaps by propagating a large number of
replicate samples through it in a Monte Carlo simulation.
Superimposed on these graphs are distribution functions
Sn for two hypothetical data sets. On the left graph, the
data set consists of the single value 252 �C, and on the
right, the data set consists of the values {226, 238, 244,
261}. The areas measuring the mismatches between the
prediction and the two data sets are shaded. In the left
graph, the area consists of a region to the left of the datum
at 252, and a region to right of it. In the right graph, there
are four shaded regions composing the total area between
the prediction distribution and the data distribution.
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Fig. 8. Example data sets, with n = 1 on the left and n = 4 on the right, shown a
(shaded) between the prediction distribution and the two data sets.

0 100 10 20
0

1

Pr
ob

ab
ili

ty

Fig. 9. Examples of matches between a prediction distrib
Fig. 9 shows how the area metric differs from a valida-
tion measure based on merely matching in the mean or
matching in both the mean and variance. In each of three
cases, the prediction distribution is shown as a smooth gray
curve. It is the same in all three graphs, although the scale
in the third graph is a bit different from the other two. The
black step functions represent three different data sets as
empirical distribution functions Sn. In the leftmost graph,
the prediction distribution and the observed data have
the same mean. But, otherwise, the data look pretty differ-
ent from the prediction; the data appear to be mostly in
two clusters on either side of the mean. Indeed, so long
as the average of the data balances at that mean, those data
clusters could be arbitrarily far away from each other, and
any validation measure based only on the mean would not
detect any discrepancy between the theory and the data,
even though the data might bear utterly no resemblance
to the prediction, apart from their matching in the mean.
In the middle graph, both the mean and the variance match
between the observed data and the theoretical prediction,
but still one should not be very proud of the fit of the data
here because of how deviant the prediction is with respect
to the left tail of the distribution. Smaller values are more
prevalent in the real data than were predicted. In the third
graph, the conformance between the prediction and the
data is good overall. This is reflected in the smallness of
the area between the prediction distribution and the data
distribution. The only way for the area to be small is for
the two distributions to match closely in all respects. In
each of these cases, the overall fit can be measured by the
area between the two curves. It measures disagreements
that the lower-order moments like the mean and variance
cannot address.

In complex engineering systems it is not uncommon to
have only one experimental test of the complete system.
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This situation is reflected in the thermal challenge problem,
particularly in the ‘low’ data set where there is a single
observation to compare against each prediction distribu-
tion. In such cases, the empirical distributions are not com-
plex step functions, but instead single-step spikes
representing point values (i.e., degenerate distributions).
Fig. 10 shows how the area metric varies with different val-
ues for a single datum matched against a prediction distri-
bution. In these three examples, the prediction distribution
is centered at 2 and ranges between 0 and 4. The most
important thing to notice is that a single value can never
perfectly match the entire distribution, unless that distribu-
tion is itself a degenerate point value. The first and second
graphs of the figure compare the prediction distribution to
a single observation at 2.25 and 1.18, respectively, yielding
corresponding values for the area metric of 0.44 and 0.86.
About the best possible match that a single datum could
have occurs when the datum is located at the distribution’s
median, but, even there, the area metric will often be pretty
large. In the case of the distribution depicted in Fig. 10, the
area metric will be smallest when the observation is 2,
which yields a value of 0.4 for the metric. That value
depends on the shape of the prediction distribution, espe-
cially its kurtosis. If, for example, the prediction distribu-
tion were uniform over the range [a,b], a single
observation cannot be any ‘closer’ to it than (b � a)/4,
which is the value of the area metric if the point is at the
median. That’s the best match possible with a single data
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Fig. 12. Why physical units are im
point. How bad could the match be? The match could be
very bad; indeed, it can be bad to an arbitrarily large
degree. The rightmost graph in Fig. 10 shows another
example of a single datum compared to the same prediction
distribution. In this case the data point is at 26, which
means that it is about 24 units away from the distribution.
The area metric can be arbitrarily large, and it reduces to
the simple difference between the datum and the prediction
when both are point values. Because the ordinate probabil-
ity is dimensionless, the units of the area are always the
same as the units of the abscissa.

The area metric depends on the scale in which the pre-
diction distribution and data are expressed. The two graphs
in Fig. 11 depict a pair of comparisons in which the corre-
sponding shapes are identical but the scales are different, as
though the left graph were expressed in meters and the
right graph in centimeters. Although the shapes are the
same, the area metric is different by 100 fold. It would, of
course, be possible to normalize the area measure, perhaps
by dividing it by the standard deviation of the prediction
distribution, but we do not believe this would be a good
idea because the result would no longer be expressed in
the physical units of the abscissa. Such a normalization
would destroy the meaning of the metric.

Fig. 12 illustrates why retaining the scale and physical
units (degrees, seconds, meters, Newtons, etc.) of the data
is important for the intuitive appeal of a validation metric.
The two graphs are drawn with the same x-axis, and they
10 15 20 250 5
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urve) with three different data points (black spikes).
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metric’s dependence on the scale.
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portant for a validation metric.
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depict the same prediction distribution as a gray curve con-
centrated around 2. Two data sets are summarized as the
Sn distributions shown as black step functions on the
graphs. A statistician might argue that the comparison in
the right graph reveals a better match between the theory
and the data than the comparison in the left graph. In
the left graph, the two distributions do not even overlap,
whereas in the right graph the distributions at least overlap
and are similar in their means. Using a traditional Kol-
mogorov–Smirnov test for differences between the two dis-
tributions, a statistician would find statistically significant
evidence the distributions in the left graph are different
(dS = 1.0, n = 5, p < 0.05), but would fail to find such evi-
dence for the distributions in the right graph (dS = 0.6,
n = 5, p > 0.05). But this is not at all how engineers would
understand these two comparisons. For engineers, the main
focus is on the discrepancy, in units along the x-axis,
between the two distributions. In this sense, the compari-
son on the left is a much better match between theory
and data than is the comparison on the right. Engineers
have a strong intuition that the data–theory comparison
on the left has a better match than that on the right, even
though the distributions on the left do not even overlap
with each other. The discrepancy on the left is never larger
than half a unit along the x-axis, whereas the discrepancy
on the right could be larger than two units. It is this phys-
ical distance measuring the disagreement that really mat-
ters to engineers, not some arcane probabilistic distance.
This is the reason why the validation metric should be
expressed in the original units, as is the case for the area
metric.

Finally, consider the behavior of the area metric as the-
ory and evidence diverge further and further. Fig. 13 shows
two graphs, each with a prediction distribution drawn in
gray and data distribution drawn in black. Neither data
distribution overlaps its respective prediction distribution.
The traditional and commonly used Smirnov’s distance
(which is the maximum vertical distance between the two
distributions) cannot distinguish between these two com-
parisons. The maximal vertical distance in both cases is just
unity, so the distributions are both as far apart as they can
be according to the Smirnov metric. Under this measure,
each data distribution is simply ‘far’ from its prediction dis-
tribution. The area metric, on the other hand, is about 2 for
the left graph and about 40 for the right graph. The area
metric therefore identifies the left graph as having consider-
ably more concordance between data and prediction than
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Fig. 13. Distinguishing non-overlapping
the right graph. If the criterion for an acceptably accurate
prediction is that it is within 10 units of the actual data,
then it might be that the prediction in the left graph is
acceptable for the intended purpose, even though the pre-
diction in this case does not overlap with the data. Like-
wise, given the same accuracy requirement, the prediction
in the right graph is not acceptable for the intended use.

5.4. Validation assessment when predictions are sparse

Engineers naturally strive for high fidelity between their
computer models and the underlying physical reality they
try to represent. In many disciplines, this leads to extremely
complex and detailed models. In fluid dynamics modeling
of turbulence, for example, it is possible today for com-
puter models to use 1015 grid points! But there are practical
tradeoffs to such fidelity. Because the computational bur-
den is so large, it is sometimes difficult or, in some extreme
cases, even practically impossible to extract any type of
uncertainty information from these highly detailed models.

The area metric proposed here is applicable even when
the predictions are sparse. Suppose, for instance, it is prac-
tical to conduct only a small number of simulations of a
complex model to produce a handful of quantitative pre-
dictions. Although these models cannot produce the
smooth prediction distributions that other models generate
with many simulation runs, it may be reasonable to con-
sider the values computed to be samples from that smooth
distribution. If they are random samples (as they would be
if inputs are selected randomly), then the ‘empirical’ distri-
bution function formed from these values is an unbiased
nonparametric estimator of the true distribution that
would emerge with asymptotically many runs. The predic-
tion distributions for the challenge problem that are dis-
played in Figs. 3 and 7 were each based on 10,000 Monte
Carlo replications, but it is clear that the area validation
metric could be applied even if many fewer replications
had been employed. In fact, the area metric can in principle
be applied to the case when the prediction distribution is
characterized with only few simulation runs of the model.
Fig. 14 illustrates the idea of constructing Sn functions
for both data and predictions, the latter being the values
from the sample runs of the model. In this case, there were
only three simulations of the model conducted, whose val-
ues are random samples from an underlying distribution.
They are to be compared against a data set consisting of
five values.
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data and prediction distributions.
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Fig. 14. The area metric when the prediction distribution (gray) is
characterized by only three simulation runs.
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Having very few simulation runs really means that ana-
lysts can construct only an impoverished picture of what
the model is actually predicting. This implies the prediction
will be accompanied by substantial epistemic uncertainty
arising from sampling error. Future work will address the
issue of expressing this and other forms of epistemic uncer-
tainty in the prediction distribution and accounting for it
with the area validation metric.

5.5. Pooling incomparable comparisons

This section describes an approach based on the area
metric that can be used to integrate the evidence from all
relevant data over the entire validation domain into a sin-
gle measure of overall mismatch.

When several observations are collected for a single pre-
diction distribution, the empirical distribution Sn is used to
pool these experimental data into a single object for com-
parison against the prediction distribution. This pooling
is not possible, however, when data are to be compared
against different distributions. If, for example, the model
predicts temperature at several instances as a function of
time, it would not be reasonable to pool observed temper-
atures collected along the time axis (unless their predicted
distributions happened to be identical). In this case, the
data must be compared with their respective prediction dis-
tributions. Does that imply that we will have multiple val-
ues of the validation metric to compute? One could
certainly compute all the areas separately for each pair of
prediction distribution and its observation(s). But, if we
did this, how could we combine the resulting areas together
in some sensible way into an aggregate measure of the
overall discrepancy between the model’s predictions and
the experimental data?

The most workable strategy around this problem is to
express the conformance of theory and data on some uni-
versal scale. The natural scale for this purpose is probabil-
ity. By transforming every datum xi according to its
corresponding prediction distribution Fi, we obtain a value
ui = Fi (xi), which ranges on the unit interval [0,1]. Fig. 15
shows three such transformations for hypothetical observa-
tions depicted as spikes and their corresponding prediction
distributions shown as gray curves. For example, in the
thermal challenge problem these three graphs could be the
temperature responses at three different values of time t or
three different values of location x. The intersections of
the spikes and their distribution functions identify values
on the probability scale for each u-value. The prediction dis-
tributions Fi can be any shape at all, and they need not be
the same for different observations. The u’s are always
defined because F(x) = 1 for any value of x larger than
the largest value in the distribution, and F(x) = 0 for any
value smaller than the smallest value in distribution.

The various resulting u-values can then be pooled to
obtain an overall summary metric assessing the accuracy
of the model’s predictions. Under the assumption that
the xi really are distributed according to their respective
distributions Fi, these ui = Fi(xi) will have a uniform distri-
bution on [0, 1]. This fact is called the probability integral
transform theorem in statistics [39]. This is what it means
for a random variable to be ‘‘distributed according” to a
distribution. The converse of this fact is perhaps more
familiar to engineers because it is often used to generate
random deviates from any specified probability distribu-
tion: given a distribution F and a uniform random value
u between zero and one, the value F�1(u) will be a random
variable distributed according to F. Conversely, if x is dis-
tributed according to F, then u = F(x) is distributed
according to a uniform distribution over [0,1]. None of this
changes if there happen to be multiple x- and u-values, and,
in fact, none of it changes if there are multiple distribution
functions, so long as the x-values are properly matched
with their respective distributions. The x-values are made
into compatible u-values by this transformation. Because
all the u-values are randomly and uniformly distributed
over the same range, then pooling them together yields a
set of values that are collectively randomly and uniformly
distributed over that range. If, however, we find that the
ui are not distributed according to the uniform distribution
over [0,1], then we can infer that the x observations must
not have been distributed according to their prediction dis-
tribution functions.

The distribution of pooled u-values can be studied to
infer characteristics of the overall match between the x-val-
ues and their respective prediction distributions. For
instance, the area metric can be applied directly to the
u-values compared against the standard uniform distribu-
tion. Also, the model’s (mis)match for different predictions,
generated from their particular observations, can also be
compared to each other. This would allow one to conclude,
for example, that a model predicts well for, say, high tem-
peratures but not for low temperatures. The reason this is
possible is that we have transformed all the observations
into the same universal probability scale for the
comparisons.

Transforming the observations into a universal proba-
bility scale is useful for aggregating incomparable data,
but, by itself, it has the disadvantage of abandoning the
original physical units of the comparisons. This deficiency
can be repaired by back-transforming the u-values through
a suitable distribution function G that restores the scale



0 5
0

1

1 32

G

y

u1

u2

u3

Pr
ob

ab
ili

ty

0 5
0

1

1 32

G

y
4 4

Fig. 16. Back-transformation from the u-scale to an archetypal scale determined by a distribution G (left) and the area metric for the pooled back-
transformed values against the G distribution (right).

1 10 100 1000
0

1

0 1 2 3 4
0

1

0 10
0

1

u1

u2

u3

5
Pr

ob
ab

ili
ty F1 F2 F3

x1 x2 x3

Fig. 15. Translation of observations (spikes) through prediction distributions (gray) to a universal probability scale.

S. Ferson et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2408–2430 2421
and its interpretation. Fig. 16 shows how this would work
for the three u’s that were computed in the previous figure.
The right graph shows the empirical distribution function
Sn of those three back-transformed data values

yi ¼ G�1ðuiÞ ¼ G�1ðF iðxiÞÞ:
All of these yi have the same scale, which are inherited from
G. This back-transformation depends on the specification
of the G distribution. What distribution should be used?
In the case of the challenge problem we are considering
in this paper, it makes sense to use the prediction distribu-
tion about the regulatory requirement as the back-transfor-
mation distribution. This is the distribution, after all, that
spells out where we are specifically interested in the model’s
predictive capability. Using the regulatory prediction dis-
tribution as the G distribution allows all the available
observations that are germane to any predictions made
by the model to be used to characterize the uncertainty
about this most important prediction. The right graph in
Fig. 16 also shows with shading the area metric between
the back-transformed yi and the prediction distribution
G. This metric is in the physically meaningful units as a re-
sult of the back-transformation.

We can use the name ‘u-pooling’ for this procedure of
transforming data to the probability scale and back-trans-
forming to some specified scale. Just as forming the empiri-
cal distribution Sn from a collection of data allows us to pool
those observations, u-pooling allows us to pool observations
that correspond to different prediction distributions.

5.6. Testing the validation metric

Oberkampf and Barone [32] considered the important
question of how an analyst might justify a conclusion that
there is a significant disagreement between a theory’s mean
predictions and the means of its validation data based on
quantitative analysis. Methods are needed to allow the ana-
lyst to answer the ‘so what?’ question about particular val-
ues of the validation metric. Consider, for instance, two
situations. In the first, experimental observations have been
exhaustively collected so that there is essentially no sam-
pling uncertainty about the data distribution, and likewise
the function evaluations are cheap so the prediction can
also be specified without any sampling uncertainty. Sup-
pose that we compute the validation metric in this situation
to be d = 1. In the second situation, we compute the valida-
tion metric to be d = 10, but it is based on a very small
sample size of empirical observations, or a small number
of function evaluations, or both. In the first situation, the
disparity between the predictions and the data is statisti-
cally significant in the sense that it cannot be explained
by randomness arising from the sampling uncertainty
(because there is none), but must rather be due to inaccu-
racies in the model. In the second situation, however, it is
not clear that the disagreement between the predictions
and the data is significant, even though it is ten times lar-
ger. The computed discrepancy might be entirely due to
the vagaries of random chance that were at play when
the observations and function evaluations were made.
Some kind of statistical analysis is required to give a con-

text for these two d values to understand when a value is
big and when it is not really so big.

Oberkampf and Barone [32] offered a way to formally
determine whether there is a substantial mismatch between
validation data and a model’s predictions. They compared
the scatter of sampling variability seen among multiple
experimental observations (quantified as traditional Ney-
man–Pearson confidence intervals) to the difference
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between the mean output from the predictive model and
the sample mean of the observational data. They show
how the approach can be applied when the experimental
data is autocorrelated, as it often is when observations
are collected as functions of time or some other control
variable. Their approach depends on replicated experimen-
tal observations, and cannot be used when there is only a
single observation per prediction distribution. Moreover,
their approach lacks a formal statistical underpinning
because it is based on an intuitive argument about the plau-
sible magnitude of the error between model and data in the
face of sampling uncertainty about the latter.

We suggest that statistical methods to detect evidence of
significant mismatch between a model and its validation
data can be constructed by applying standard statistical
tests to the u-values or the y-values derived in the previous
section. These methods can be used by an analyst to
formally justify an impression or conclusion that the exper-
imental observations disagree with the model’s predictions.
Transforming the x-values to u-values and pooling all the
u-values together can substantially increase the power of
the statistical test because the sample size is larger in a sin-
gle, synthetic analysis. For example, statistical tests for
departures from uniformity, such as the traditional Kol-
mogorov–Smirnov test [35], applied to the u-values can
identify significant overall failure of the model’s predictive
capability. This test assumes that the experimental data
values are independent of one another, which is not always
true in practice, especially when observations have been
collected along a time course as in the challenge problem.
There are other statistical tests that are also commonly
applied in this situation, including the traditional chi-
squared test and Neyman’s smooth tests [40,41] and refer-
ences therein. The test can also be applied to compare the yi

values against the predicted distribution G in the physically
meaningful scale. One could also define statistical tests of
whether the discrepancy between data and theory is larger
than some threshold size.

6. Validation and prediction for the challenge problem

Sections 3 and 4 described two distinct implementations
of the heating model and extracted from each a prediction
about the distribution of surface temperatures after 1000 s.
In Section 5 we discussed the development of the area val-
idation metric and a scheme to pool comparisons made on
different scales. In this section, we apply the validation met-
ric to the thermal challenge problem. Using this metric we
ask two questions: How well do the predictions match the
actual observations that are available? And what does the
match, or rather the mismatch, of the empirical data with
the model’s predictions tell us about what we should infer
about other predictions? We first assess the performance of
the model over the validation domain by u-pooling to com-
pute a summary measurement of the overall mismatch
between the model and the data. We also extrapolate the
validation measures to characterize the predictive capabil-
ity of each model to address the regulatory requirement
in the challenge problem. These two uses of the validation
metric are independent; the predictive capability is not

based directly on the result of the validation assessment,
but rather derived separately from the values of the valida-
tion metric from comparisons of individual experimental
observations to the respective model predictions.

The designers of the thermal challenge problem intro-
duced several subtleties that must be addressed. For
instance, the experimental design that produced the valida-
tion data used several configurations of the environmental
heat flux q and thickness L of the device material, none of
which corresponded exactly to the configuration of interest
in the statement of the regulatory requirement in Expres-
sion (2). There are also some temperature data at different
positions within the device material, at the surface, in the
middle and on the other side. Apparently, the purpose of
this bracketing was to explore and account for any trends
that might be present in the performance of the model.
The validation data were divided in the challenge problem
into ensemble and accreditation data, distinguished pri-
marily by the closeness of the conditions to the configura-
tion of interest in the regulatory requirement. Although we
did not treat the ensemble and accreditation observations
differently, doing so would not be incompatible with the
use of the validation metric proposed in this paper.

In the ensemble data, temperatures were measured at
each of 11 points in time between 0 and 1000 s, and, in
the accreditation data, temperature was measured at 21
points in time during the heating. However, we presume
that the initial temperatures of 25 �C that appear in the
top rows (at t = 0 s) of Tables 6 and 8 in [4] are not to be
compared against the model predictions because they are
really initial conditions rather than observations of the
course of heating. Thus, there are only 10 observations
per experiment in the ensemble data set and only 20 time
observations per experiment in the accreditation data set.

6.1. Model performance over the validation domain

To evaluate the overall performances of the two models
we used the u-pooling approach described in Section 5.5.
Every observation in the validation domain (which consists
of the ensemble data plus the accreditation data) is associ-
ated with values of the control parameters q, L, x and t as
determined by the experimenter at which the observation
was collected. These four parameters, along with the distri-
butions characterizing the variability of k and qCp, were
used in Monte Carlo simulations (with 10,000 replications
each) to compute the prediction distribution of tempera-
tures from the heating model in Expression (1) defined by
these control parameters. Every temperature observation
in the validation domain is thereby paired with a prediction
distribution of temperature. There are 140 of these pairs in
the ‘medium’ data set. The pairs define the u-values uj = Fj

(Tj), where T denotes an observed temperature and F

denotes the associated prediction distribution and
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j = 1, . . . , 140. Fig. 17 shows empirical distributions of
these u-values. These empirical distributions constitute
summaries of the performances of the two analyses
described in Sections 3 and 4. The step function in each
graph represents all 140 observations of temperature in
the ‘medium’ data set compared to their respective predic-
tion distributions generated under that analysis. The step
functions are the empirical distributions of the u-values
produced by these comparisons. These distributions are
to be compared against the uniform distribution over
[0,1], whose graph appears in each graph as the 45� line.
These are the lines of perfect agreement. If the observed
temperatures were drawn from distributions matching
those that were predicted by the model under an analysis,
then the step function would match the uniform distribu-
tion, to within fluctuations due to random chance.

Fig. 18 shows the back-transformations of these distri-
butions to the physically meaningful scales of temperature.
The smooth curves in the graphs are the prediction distri-
butions under the two analyses for the conditions of the
regulatory requirement. (As explained in Section 2, these
conditions were x = 0 cm, t = 1000 s, Ti = 25 �C, q =
3500 W/m2, and L = 1.90 cm, which correspond to the
distributions previously displayed in Figs. 3 and 7.) Also
700 800 900 1000 1100 1200

0

1

Temperature

E
xc

ee
da

nc
e

pr
ob

ab
ili

ty

d = 37˚C

Prediction 
distribution

Back-transformed
distribution

Standard risk analysis

Fig. 18. Distributions of back-transformed u-values (step functions) compared
displayed in Fig. 18 as step functions are the corresponding
pooled distributions of u-values back-transformed onto the

same temperature scale via the inverse probability integral
transforms specified by the respective prediction distribu-
tions. That is, they are the distributions of the quantity
G�1(uj) where G is the prediction distribution of regulatory
interest under each of the two parallel risk analyses.

The graphs in Fig. 18 are just nonlinear rescalings of the
graphs in Fig. 17. Under these rescalings the straight lines
become the smooth curves, and the tails of the step func-
tions are stretched relative to central values of the distribu-
tions. For each graph, the transformation of the abscissa is
exactly the one that changes the standard uniform distribu-
tion into the prediction distribution. The ordinate is also
flipped from cumulative to exceedance probability. The
result translates the evidence embodied in all 140 observa-
tions in the ensemble and accreditation data sets onto the
scale defined by the prediction distribution for the regula-
tory requirement in Expression (2). These distributions
should not be interpreted as though they were themselves
data collected on this very temperature scale. They were,
after all, collected on a variety of temperature scales and
are pooled for the sake of this comparison. Thus, they do
not represent direct evidence about what the temperatures
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will be under the conditions of the regulatory requirement,
but only how well the prediction distributions produced by
the model have matched temperatures so extreme under
other conditions in the validation domain.

The temperature-dependent risk analysis, illustrated in
the right graph, has a somewhat better match with the
available empirical data than the standard risk analysis,
illustrated in the left graph. The distribution of back-trans-
formed u-values is closer in this analysis to its prediction
distribution shown as the smooth curve. The superiority
of this match is reflected by the area metric d in the follow-
ing table.
Analysis
 d
 95% confidence
interval
Standard risk analysis
 37.2 �C
 [34.0, 42.7] �C

Temperature-dependent

analysis

30.4 �C
 [27.4, 33.7] �C
Recall that the area metric d measures the area between
the empirical distribution of back-transformed pooled
u-values and the prediction distribution which is our expec-
tation about them. The 95% confidence intervals were com-
puted by a nonparametric bootstrap method [42] based on
resampling from the 140 u-values. That is, we took a ran-
dom sample of size 140 from the distribution of u-values
(with replacement obviously) and recomputed the value
of d by comparing the distribution of these randomly
selected u’s to the prediction distribution. We repeated this
process 10,000 times and sorted the resulting array of
d-values. The 95% confidence interval was estimated as
[d(2.5N/100), d(N�(2.5/100)N)] = [d(250),d(9750)], i.e., the interval
between the 250th and 9750th values from the sorted list
of 10,000d’s. Each confidence interval estimates the sam-
pling uncertainty associated with the actual value of d aris-
ing from having computed it from only 140 observations.

Both of the graphs in Fig. 18 suggest that Expression (1)
is somewhat better at predicting temperatures close to
900 �C than it is at predicting much lower temperatures.
This may be the result of the model in [4, (Eq. (2))] having
been calibrated to perform well around this temperature.
In any case, good model performance for such temperatures
is likely to be of considerable interest in an application like
the challenge problem. The temperature-dependent analysis
used regression and an iterative simulation scheme to repre-
sent the dependence evident in the materials characteriza-
tion data between temperature and thermal conductivity.
The reward for the substantial extra calculation is a modest
improvement in the model’s performance vis-à-vis the data.
The match for this analysis was quantitatively better than
that of the standard risk analysis.

Calculations were also done with the ‘low’ and ‘high’
data sets, which yielded qualitatively similar results; the
temperature-dependent analysis was somewhat better than
the standard risk analysis for both data sets in the area
metric. The performances of the model under the two anal-
yses for all three data sets in terms of the area metric d and
a 95% bootstrap confidence interval around it are given in
units of �C in this table:
Analysis
 Low
(n = 100)
Medium
(n = 140)
High
(n = 280)
Standard risk
analysis
52.6,
[49.4,55.9]
37.2,
[34.0,42.7]
18.5,
[15.3,23.9]
Temperature-
dependent analysis
34.1,
[30.0,38.1]
30.4,
[27.4,33.7]
11.6,
[9.5,15.0]
Fig. 19 summarizes the performance results graphically as
distributions of the back-transformed u-values compared
to the respective prediction distributions for the two anal-
yses under the ‘low’ and ‘high’ data sets.

The graphs in Figs. 18 and 19 reveal that the area metric
d as used in the validation assessment is strongly sensitive to
the sample size of the observations on which it is based. This
is not because the model is getting more accurate with more
data. Rather, it is the result of there being more evidence of a
good match between the model and the data. For the chal-
lenge problem, as the number of observations increases
through the three data sets, the value of the area metric
declines considerably. Of course, this might not have been
true if the model were making inaccurate predictions. Inso-
far as the model is accurate, however, increasing the sample
size decreases d to its lower limit of zero. The dependence of
d on the number of observations means that we should only
compare performances that are based on the same sample
size, i.e., within columns of the table above. In this case,
the temperature-dependent analysis has a consistently bet-
ter (smaller) overall d than the standard risk analysis at
all three sample sizes described in the challenge problem.

6.2. Extrapolation and predictive capability

What does overall model uncertainty as assessed by com-

paring predictions from each analysis to observations tell us
about the reliability of the model’s prediction about the reg-
ulatory requirement? To answer this question we employed
linear regression to extrapolate the evidence about the
(mis)match between predictions and data seen under several
experimental conditions to the set of conditions relevant to
the regulatory requirement in Expression (2).

For the sake of simplicity, we describe this extrapolation
only for the temperature-dependent risk analysis under the
‘medium’ data set. Entirely analogous calculations are possi-
ble for the other analysis and the other data sets. Assessing
the predictive capability is essentially putting uncertainty
bands around forecasts. In the case of the thermal challenge
problem under the temperature-dependent risk analysis,
Fig. 7 showed that the expected risk of being larger than
900 �C after 1000 s is already five times larger than 0.01,
which is the upper limit on this probability allowed by the
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regulatory requirement. Adding uncertainty around this risk
will only make the upper limit on the probability get larger.
Nothing that is computed in this section could ever suddenly
make the system seem to come into compliance with the reg-
ulatory requirement. We note at the start that the question
about predictive capability is already a moot one for whether
the device can sufficiently insulate under the specified heat
flux to meet the regulatory requirement. We make the calcu-
lations described below not in answer to the challenge prob-
lem—we already know that this answer is ‘no’—but as an
example of how we suggest one could estimate uncertainty
due to the empirical error and extrapolation of the model
to the conditions of intended use.

There were 140 temperature observations made at vari-
ous heat fluxes q, thicknesses L, positions x, and times t in
the ‘medium’ data set. (Interestingly, only one initial tem-
perature Ti was considered in the challenge problem.) As
described in Section 6.1, the prediction distribution from
the heating model in Expression (1) under each of these
140 specifications was computed with a Monte Carlo sim-
ulation. Each observed temperature was then compared
to its respective prediction distribution and a u-value was
computed. Instead of first pooling these 140 u-values as
we did in the previous section, we back-transformed each
u-value directly to the temperature scale using the predic-
tion distribution associated with the conditions of the
regulatory requirement in Expression (2). That is, we com-
puted the back-transformed temperature T �j ¼ G�1ðF jðT jÞÞ
where T denotes observed temperature, F denotes the asso-
ciated prediction distribution, G is the distribution depicted
in Fig. 7, and j = 1, . . . , 140 indexes the observations. We
then computed the area metric dðT �j ;GÞ between the
back-transformed temperature and the prediction distribu-
tion of regulatory interest. These comparisons of scalar val-
ues and the prediction distribution for temperature at the
conditions for the regulatory requirement thus yielded
140 values of the area metric. The mean of these areas
was 69, with values ranging between 56 and 129.

The 140 areas were regressed against the input variables
q, L, x, t with a linear model to look for any trends that
might be present, and to develop a statistical model of
the sampling uncertainty associated with a prediction of
the value of the area metric expected at the conditions
for the regulatory requirement. The regression yielded
strongly significant regression coefficients for q, L and t

(with p < 0.001) but found no significance for the x vari-
able. The best fitting linear model for the expected value
of the area metric for a single (new) observation as a func-
tion of heat flux, thickness, position and time is

126� 0:0160q� 914Lþ 201x� 0:0124t þ Nð0; 10:8Þ;

where the last term is the normally distributed residual er-
ror arising from unexplained scatter in the area values. At
the configuration for the regulatory requirement, this
becomes

126� 0:0160ð3500Þ � 914ð0:019Þ þ 201ð0Þ � 0:0124ð1000Þ
þ Nð0; 10:8Þ;

which equals 40.2 + N(0,10.8). Thus, the regression model
under those conditions is saying we expect a value for the
area metric to be about 40, with some uncertainty so that
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it typically ranges from about 30 to 50. Other regression
models might have been used for this extrapolation, possi-
bly including nonlinear relationships or other variables,
perhaps even the predicted temperature itself.

Because we are extrapolating to conditions specified in
the regulatory requirement that were never directly studied,
it is especially important to account for sampling uncer-
tainty in predicting the magnitude of the area metric under
those conditions. A standard way to do this for linear
regressions is to compute the prediction intervals. The
95% prediction interval for the value of the area metric pre-
dicted under the conditions x = 0 cm, t = 1000 s, Ti =
25 �C, q = 3500 W/m2, and L = 1.90 cm, is [17, 63] �C.
Because we are trying to capture the epistemic uncertainty
about the model’s predictions vis-à-vis the data, we would
always use the upper bound from the prediction interval as
our estimate of the possible error of the model.

How should this extrapolation of the area metric as a
function of q, L, x, t be interpreted as predictive capability?
This is an open question. Fig. 20 shows one possible way.
The graph depicts a prediction distribution as the inner
curve, with a parallel distribution on either side of it dis-
placed in the positive or negative direction just enough so
that the area between each curve and the prediction in
the middle is the specified amount extrapolated from the
validation assessment. Given the performance of the
model, one could not reasonably expect the prediction to
have accuracy any better than that characterized by these
outer distributions. In our view, they represent the minimal
uncertainty associated with the predictive capability of the
model as evidenced by the validation assessment on avail-
able data. Thus, the predictive capability of the model for
future data sets is at least as bad as depicted in this graph.

This assessment applies, in particular, to the prediction
distributions from the traditional risk analysis (Section 3)
and the temperature-dependent risk analysis (Section 4)
from which we made inferences about the probability of
surface temperatures being larger than 900 �C. By displac-
ing the prediction distributions (in both directions) by the
upper bound of the prediction interval for the value of
the area metric from the regression extrapolated to the con-
ditions of regulatory interest, lower and upper bounds on
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Fig. 20. One way to interpret an estimated area metric value as predictive
capability.
the probability of exceeding 900 �C can be read from the
graphs as the vertical interval on probability between the
bounds at that temperature. These bounds characterize
the predictive capability with respect to the regulatory
requirement.

The expectation that future data would form a distribu-
tion within these bounds amounts to assuming that the
shape of the distribution is correct and that only its loca-
tion along the abscissa is in real doubt. There are other
more conservative ways one might extrapolate the area
metric to forecast predictive capability. For instance, the
outer curves might be constructed as the envelope of all dis-
tribution functions that are as close to the prediction distri-
bution as the area metric observed in the validation.

Would it still be reasonable to use regression if there had
been validation data at the particular configuration of
interest? In the case of the thermal challenge problem, if
observations of temperature had been collected under the
precise conditions mentioned in the regulatory require-
ment, would there be any point to developing a regression?
Even though the regression is not needed for an extrapola-
tion, analysts might still prefer to make use of the ancillary
information collected under other configurations to
improve the assessment of the predictive capability. In
addition to a better estimate of the expectation, regression
analyses also permit the estimate of confidence intervals
that would be useful in expressing the effect of sampling
uncertainty on the reliability of the estimate.

As mentioned in the introduction to Section 6, the esti-
mate of the model’s predictive capability is not based on
the summary validation metric computed by first pooling
u-values. Instead, the empirical evidence is expressed in
terms of the validation metric and then aggregated via a
regression analysis. The reason it has to be done this way
is that pooling uses up all the data to compute a single
value of the validation metric and does not allow us to later
decompose the evidence about the data–model mismatch in
a way that is necessary for the extrapolation to characterize
the uncertainty about the model’s prediction at the condi-
tions of regulatory interest.

7. Specific taskings

The tasking document [5] for the challenge problems
poses several specific questions to be asked about any pro-
posed solution to the problem. We do not reproduce those
questions here, but only give our responses to them. These
answers serve as a summary of the approach we have used
to address the thermal challenge problem. In the preambles
to the questions, Hills et al. [5] assert several times that rep-
licates within the ensemble and accreditation databases are
independent. Although they were not clear in this matter,
they must have been referring to the replication of individ-
ual experiments and not referring to measurements at dif-
ferent times during the same experiment. That is,
experiments consisting of ten or twenty observations as a
function of time are independent of one another, but the
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individual temperature observations at various times are
certainly not mutually independent.

Both Hills et al. [5] and Dowding et al. [4] draw a dis-
tinction between ‘‘ensemble” and ‘‘accreditation” data,
but we have not observed such a distinction in the analyses
described here. Both are experimental observations of the
system response quantity, collected under conditions vari-
ously close to or far from the conditions specified by the
regulatory requirement. For us, there is no qualitative dif-
ference between the two kinds of observations, and we treat
them in a unified way, both in the analyses described in this
paper and in our responses to the questions of the tasking
document.

7.1. Material characterization responses

1. The variability observed in the material characterization
data is recognized as stochastic variation that accompa-
nies manufacture of the device out of the shielding mate-
rial. Different devices will have shielding with different
material properties. We used normal probability distri-
butions to characterize this variation, and estimated
the distributions’ parameters using the method of
matching moments. Sensitivity analysis was used to
characterize the effect of uncertainty about the normal-
ity assumption.

2. The benefit of additional data (from ‘low’ to ‘medium’,
and from ‘medium’ to ‘high’) on material characteriza-
tion could be quantified with any of many standard sta-
tistical goodness-of-fit measures used in fitting
probability distributions. We did not bother to compute
these measures for the material characterization here
(but see the response to question #5 in Section 7.2
below).
7.2. Validation with ensemble and accreditation data

responses

1. The area between the model’s prediction distribution
and the empirical distribution function of measurements
of the system response quantity is used as the validation
metric.

2. The area validation metrics d and their 95% confidence
intervals for the standard risk analysis and the tempera-
ture-dependent analysis are summarized in this table:
Analysis Low
(n = 100)

Medium
(n = 140)

High
(n = 280)

Standard risk
analysis

52.6,
[49.4,55.9]

37.2,
[34.0,42.7]

18.5,
[15.3,23.9]

Temperature-
dependent

34.1,
[30.0,38.1]

30.4,
[27.4,33.7]

11.6,
[9.5,15.0]
Increasing sample size decreases the value of the
validation metric, and tends to narrow its confidence
interval, at least in the case of the temperature-depen-
dent analysis which exhibits the better match to the
available data.

3. Analysts should not specify the requirements on accu-

racy; such requirements are the province of decision
makers. The reason is that different decision makers
and different uses have widely different demands on a
model’s accuracy. Analysts should only determine the
accuracy of the model and estimate the uncertainty
about a prediction, which may be good or poor given
the needs of the decision maker. In response to this
quantification of a model’s accuracy, a decision maker
might reject the model’s use for a particular application,
or alternatively the decision maker might infer from the
model’s estimated inaccuracy that an engineered system
must be designed more conservatively with larger mar-
gins of tolerance to account for the poor model
performance.

4. A calibration step is not recommended as a part of val-
idation. We argue that calibration and validation
should be carefully distinguished. (Fitting distributions
to the thermal conductivities and heat capacities in the
material characterization data, although part of the
modeling process, is not considered to be calibration
because the distributions were not selected with refer-
ence to the output system response quantity of
temperature.)

5. Having more data (from ‘low’ to ‘medium’, and from
‘medium’ to ‘high’) increases the evidence for model’s
apparent accuracy, as reflected in the summary valida-
tion metric. Having more data generally allows us to be
more confident about the assessment of that accuracy
as reflected in the confidence intervals for the valida-
tion metric. The impact of increasing the number of
tests was not specifically quantified under this exercise.
However, the validation metric is sensitive to sample
size and this is reflected in the results of the analyses
of the challenge problem. Because the area validation
metric quantifies evidence of model accuracy, it reflects
sample size as well as the closeness of the values to the
predictions. In comparisons with continuous prediction
distributions, the metric can approach zero only when
sample size is large. Thus, the benefit of additional data
could in principle be quantified by the decrease in the
summary area metric assessing overall mismatch. In
the case of the standard risk analysis, when data
increases from 100 to 140 and then to 280 observa-
tions, the summary area metric decreased from 53 to
37 and then to 18 �C. For the temperature-dependent
analysis, the decrease was from 34 to 30 and then to
12 �C.

6. A minimum of one function evaluation per prediction is
required to use the proposed validation approach.
Increasing the number of function evaluations per pre-
diction improves the characterization of the prediction
distribution, typically smoothing the distribution. For
the challenge problem, ten thousand function evalua-
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tions per prediction were used because the heating equa-
tion was so simple to compute. In cases where the model
is computationally expensive, the proposed validation
metric can be applied with many fewer evaluations.

7.3. Regulatory assessment responses

1. The variabilities observed in the materials characteriza-
tion were used to define probability distributions repre-
senting parameters of the heating model. This
probabilistic model was used to make predictions about
surface temperatures after heating which were compared
to observed temperatures. The error between the
observed and predicted temperatures was extrapolated
by a statistical regression to characterize the uncertainty
of prediction of the probabilistic model under the condi-
tions of regulatory interest. The resulting assessment
was adequate to determine whether or not the regula-
tory requirement about the surface temperature after
heating will be met.

2. We constructed two analyses based on the heating
model described in the thermal challenge problem. Both
analyses predict the probability that the system response
exceeds the regulatory temperature criterion of 900 �C,
and both suggest that this probability is far larger than
the regulatory requirement that it be less than 0.01. The
following table gives the estimated probabilities for the
two analyses and the three data sets:
nalysis Low Medium High

tandard risk analysis 0.28,
[0.13,0.52]

0.22,
[0.17,0.29]

0.24,
[0.17,0.32]

emperature-dependent 0.09,
[0.04,0.18]

0.05,
[0.03,0.09]

0.05,
[0.03,0.09]
A

S

T

Also given in square brackets are bounds on those prob-
abilities implied by the model’s predictive capability
which was assessed in the validation with the area met-
ric. The bounds were obtained from displaced distribu-
tions (such as shown in Fig. 20). Note that these
bounds on the probabilities are wider than had been
characterized in the robustness analysis of Section 3.1,
because they now include the uncertainty arising from
the observed disagreement of the model compared
to the available data. None of the analyses suggest that
the system will conform with the regulatory criterion.

3. The confidence of these predictions about this probabil-
ity was assessed by extrapolating the observed error of
predicted temperature distributions compared to rele-
vant data. The resulting uncertainty bounds envelope
the threshold probability of the regulatory requirement
and therefore prevent a conclusion about whether the
system is in compliance. Nevertheless, because the
central estimates are already out of compliance, we
can conclude that there is no evidence that the system
is in compliance. This conclusion represents the third
step, the adequacy decision, in our conceptual view of
validation described in the introduction.
8. Conclusions

Although a deterministic analysis of the thermal chal-
lenge problem would suggest that the surface temperature
after 1000 s of heating would be less than 900 �C, a stan-
dard risk analysis clearly reveals that it will not satisfy
the stated regulatory requirement that surface temperature
exceeds 900 �C with probability less than 0.01. Indeed, sim-
ulations that account for the stochasticity observed among
the materials characterization data suggest that the proba-
bility of exceeding this temperature is many times more
likely than this threshold probability. The variation in this
result arises from uncertainty about how the materials
characterization data should be modeled. Using the
assumption suggested by the original challenge problem
that the material’s thermal conductivity is independent of
its temperature, we obtain the result that temperatures will
exceed the probability specified by the regulatory require-
ment by a factor of 22. Accounting for the observed corre-
lation between temperature and thermal conductivity, we
predict that the probability will exceed the regulatory
requirement by only a factor of five. Under both analyses,
the system appears to be clearly out of compliance with the
regulatory requirement.

This paper has proposed to use the area between the pre-
diction distribution and the data distribution (i.e., the
empirical distribution function) as a validation measure
that has several desirable properties, including objective-
ness and robustness, being a true unbounded metric,
retaining the units of the data themselves, generalizing
the deterministic difference, and applicable even very few
experimental or computational realizations are available.
The proposed area metric can be used to measure the over-
all error of the model in the face of observational data. It
represents an empirical assessment of model-form uncer-
tainty that should inform the interpretation of any predic-
tions the model makes. This uncertainty is apart from any
uncertainty that arises internally within the model as a con-
sequence of variability or uncertainty about model param-
eters, and it can be assessed from validation data whether
or not any uncertainties about parameters or about the
form of the model itself have been propagated through
the model. This simple area metric can be generalized by
various weighting schemes to account for situations when,
for example, overestimates are preferred to underestimates
or for situations in which matching in the distribution tails
is more important than an overall good match. This flexi-
bility may turn out to be an especially important feature
of the proposed metric.

We take validation to involve two closely related ques-
tions. The first question asks how good the model is, and
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the second asks what this match or mismatch might imply
about the performance of the model for future predictions
in some intended application. The first can be answered by
assessing the disagreement between the model’s predictions
and whatever new data may be available using the pro-
posed area validation metric. The second question can be
answered by assessing the observed error between the mod-
el’s predictions and relevant empirical observations that are
available under given conditions, and extrapolating this
error to the condition under which the prediction is to be
made. In the case of the challenge problem, the mismatch
observed between the heating model and the empirical
observations is large enough to obscure the performance
of the system so that, in fact, we cannot conclude that
the system could not possibly be in compliance with the
regulatory requirement.

The approach to validation as described in this paper
based on the proposed area metric is fundamentally unlike
the more common validation approaches based on Bayes-
ian methods or hypothesis testing. In its focus on updating,
the Bayesian approach integrates validation with calibra-
tion, which we believe ought to be rigorously separated.
Bayesians want to use whatever data is available to improve
the model as much as possible. Our approach reserves the
first use of any validation data for assessing the perfor-
mance of the model so as to reveal to decision makers
and other would-be users of the model an unvarnished—
and unrevisited—characterization of its predictive abilities.

Further research is needed on several issues, including

1. How measurement uncertainty associated with experi-
mental observations should be addressed in validation
and how it can be incorporated in the proposed area
metric.

2. Whether and how the area metric should be applied
when observational data is entirely outside the range
of the model’s prediction so as to be theoretically
‘impossible’ under the model; and

3. How the u-pooling and back-transformation strategies
might be extended to aggregate data for simultaneous
predictions of different system response quantities (such
as temperature and electric resistance) which may have
entirely different units.

A forthcoming paper will explore these issues in some
depth.
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